
Motivation
The functional and mechanical capabilities of prosthetic limbs have significantly
advanced in recent years. But prosthetic limbs used today rely on outdated neural
interfaces whose performance prevents access to these advanced control capabilities.
Consequently, 23-32% of people in the US with upper-limb-loss abandon regular use
of their myoelectric prosthesis1. While implantable solution technologies have
significantly advanced to solve this challenge2-3, the higher-costs, health-risks and
integration of surgery into the prosthetist directed health care model remain
obstacles to commercial integration of these sensors.

Objective
We have set out to develop technology that can access the same neural information as
implanted systems but with a noninvasive solution, referred to as MU Drive, to provide
a lower cost, lower health-risk, prosthetic control solution that is compatible with
current prosthetic-care model and will result in increased health care access for
amputees.

In this work our goal was to establish the proof-of-concept that MU Drive significantly
improves control capabilities over existing myoelectric approaches.
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WEARABLE SENSORS 

FOR MOVEMENT SCIENCES

Experiments & Testing

Muscles

❖ Extensor Digitorum

❖ Flexor Digitorum Profundus

❖ Pronator Teres

❖ Biceps Brachii

Activities

❖ Finger flexion

❖ Finger extension

❖ Forearm pronation

❖ Forearm supination

Recordings

❖ sEMG signals (dEMG, Delsys Inc.)

❖ Joint angles (SG75, Biometrics Ltd.)

❖ Forearm orientation (TrignoTM

IM, Delsys Inc.)

Subjects
Transradial

Amputees

Intact

Controls

Number n = 13 n = 10

Age (y) 47 ± 15 37 ± 15

Male/Female 8/5 5/5

Future Directions
This first time proof-of-concept forms the basis for prototype development and
testing of MU Drive in a transradial prosthesis for increased function.
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❖ Separates discrete control increments from variable signal.
❖ Uses natural mechanisms of muscle control in intact limbs, to create 

mechanically-informed neuromuscular control.
❖ Provides responsive, real-time control that maintains smoothness, and 

better replication of intended movement.
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Finger Flexion

MU Drive Control Characteristics

Forearm Pronation (Intended)

Amputee Subject Intact Control Subject
*Equivalent windows of 25 ms delay

Result 1
RMS*MU Drive*Kinematic Data
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MU Drive provides smooth, 
proportional control

MU Drive replicates intended limb movement
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MU Drive provides smooth, 
proportional control

MU Drive has Smoother, Proportional Control
Amputee Subjects

Smoothness at Best RMS Window (500 ms)

MU Drive is closer to smoothness of 
actual limb movements

Intact Control Subjects

Smoothness at Best RMS Window (500 ms)

MU Drive is smoother for all movements 

Result 2

Smoothness of Single Subject
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Smoothness of Single Subject

MU Drive is smoother
for all windows 
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MU Drive Better Replicates Actual Limb Movement in Real TimeResult 3
Intact Control Subjects
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Error of Single Subject Error at Best RMS Window (500 ms)

Delay (ms)

❖ 2.7 ± 1.3 ms of processing time (95% CI = 0.7, 4.7)
for each 20 ms segment.

❖ Real-time ratio less than 0.25:1 and total delay less
than 25 ms for each 20 ms segment.

MU Drive better replicates actual limb
for all windows

MU Drive better replicates actual limb
for all movements MU Drive provides responsive real-time control
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