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Final sEMG SSR System – Algorithms, Sensors and Mobile Deployment

Objective
We set out to design and develop a SSR
system based on recordings of the surface
electromyographic (sEMG) signal from
articulator muscles of the face and neck
during silently mouthed (subvocal) speech.

3) Initial Data Processing1

• Separating 
speech from 
non-speech 
sEMG activity

• Finite multi-
channel state 
machine 

• Robust against 
noise

Algorithm Development – Strategic evolution of Hidden Markov Models (HMMs) for SSR

• Our SSR system was able to recognize subvocal speech with 8.9% WER from a 2,200-
word vocabulary of 1,200 continuous phrases including previously unseen words.

• The miniaturized sensors provide a robust and unencumbering facial interface that
can transmit data via custom wireless or Bluetooth protocol for portable integration
with a mobile device.

• These results demonstrate the viability of our SSR system as a silent modality of
speech communication that can be developed further for persons with speech
impairments (Meltzner et al, 2017), military personnel, or consumer applications.
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1) Experiment Setup
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• Mel Frequency Cepstral Coefficients (MFCCs) provided
the lowest word error rate (WER) of 9.6% across of all
combinations of features tested.

SSR Configuration:

Data Corpus Subjects Vocabulary/Phrases

Isolated Words Controls (n=9) 65 words and digits

Sequences of Words Controls (n=4) 202 words, 1,200 sequences

Continuous Speech Controls (n=5) 2,200 words, 1,200 phrases

Speech provides an attractive modality for human-machine interface
(HMI) through automatic speech recognition (ASR). But ASR suffers from
three primary limitations:

1) Performance degradation in presence of ambient noise

2) Limited ability for privacy/secrecy

3) Poor accessibility for those with speech disorders.

These limitations have motivated the need for alternative non-acoustic
modalities of subvocal or silent speech recognition (SSR).
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2) Data Collection

• Subjects – n=18 healthy (11 males, 8 females, age range 18-42 y.o.)

• sEMG Sensors: 8 DE 2.1 sensors and Trigno™ Mini sensors (Delsys,
Natick, USA)

• Protocol – Subjects silently mouthed words while sEMG activity was
recorded from muscles of face and neck.

Challenge 1

Discriminating isolated words using 
sEMG-based speech related features
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sEMG Features

Tests for Combinations of sEMG-based Features
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Challenge 2

Tracking sequences of words from patterns 
of sEMG signals using grammatical context 
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Tests for Different Grammar Models

Grammar Models
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Challenge 3

Recognizing a large vocabulary of untrained 
words using phoneme-based models
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Tests for Gaussian Mixture Model Configurations
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Tests for Different Feature Dimensions

Gaussian Mixtures

HLDA Feature Dimension• Natural Language (NL) Equivalence Grammar provided a
larger range of linguistically correct English sentences and
had the second lowest WER of 6.8%.

• Increasing to 16 Gaussian mixtures to model each HMM
state decreased WER to 11.3%

• Reducing the HLDA feature dimension to 40 decreased
the WER to 7.3%

Subject Digits
Text

Messages

Special 

Operations

Common 

Phrases

Mean 

WER

1 2.7 0.9 2.0 0.0 1.4

2 15.4 15.9 8.0 15.4 13.9

3 20.7 12.1 13.6 5.2 12.9

4 18.2 10.3 10.6 3.7 10.7

5 12.2 5.6 3.4 1.2 5.6

Mean 13.8 9.0 7.5 5.1 8.9

SD. 7.0 5.8 4.9 6.1 5.3

SSR System Performance (WER):SSR Sensors: Trigno™ Quattro Facial Array

• Wireless/Bluetooth
communication for mobile use

• Sensors – sEMG 4 sensor-array (under
development) worn on face and neck

• Features – MFCCs

• Grammar – NL Equivalence

• Recognition Toolkit – KALDI

• Model – HMM Triphone, HLDA Feature
Reduction, maximum likelihood linear
regressions (MLLR), subspace Gaussian mixture
modelling (SGMM)
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